

Hyper-parametric search using HPC infrastructures for Tensorflow.

Gonzalo Ferro - CESGA.

Fortissimo experiment 707: Cyber-Physical Laser Metal Deposition (CyPLAM)

Experiment Partners:

End User: EMO Die and mould manufacturer (Slovenia)

Domain Expert & ISV: AIMEN Expert in laser technologies (Vigo, Spain)

HPC Centre: CESGA HPC expert and provider (Santiago de Compostela, Spain)

Experiment Description:

Laser Metal Deposition (LMD) for building and repairing large metal parts.

LMD process recorder by Medium Wavelength Infrared (**MWIR**) sensors attached to laser header.

Use Convolutional Neural Network model for monitoring the LMD process based on the MWIR images.

Model Description

Experiment Description: Loss Function

$$Loss = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{LP}(x^{i}) - y_{LP}^{i} \right)^{2} + \left(h_{LS}(x^{i}) - y_{LS}^{i} \right)^{2} \right]$$

- x^i is the ith frame of the training dataset.
- $h_{LP}(x^i)$ is the prediction for Laser Power of the NN model for ith frame.
- y_{LP}^i : label for Laser Power of the ith frame.
- $h_{LS}(x^i)$ is the prediction for Laser Speed of the NN model for ith frame.
- y_{LS}^i : label for Laser Speed of the ith frame.
- *m* : total number of training frames

Experiment Description: Metrics

$$Err^{i}(x^{i}, y_{LP}^{i}, y_{LS}^{i}) = Max \left(\frac{y_{LP}^{i}}{h_{LP}(x^{i})} - 1, \frac{y_{LS}^{i}}{h_{LS}(x^{i})} - 1 \right)$$

$$Accuracy_{20\%} = \frac{1}{n} \sum_{i=1}^{n} (Err^{i}(x^{i}, y_{LP}^{i}, y_{LS}^{i}) < 20\%)$$

Experiment Description: Dataset

414 LMD tracks stainless steel (316L), powder & base material.

324 tracks for training

90 tracks for validation

Dataset	Number of frames	Pixels	Number of labels	
Training	44,505	28 x 28 = 784	2	
Validation	162,216	28 x 28 = 784	2	

Model Description

FORTISSIMO Hyper Parametric Search: Model Parameters

Hyper Parametric Search: Implementation

	Filter Size	Number of Filters			
Convolutional Layer 01	w _{c1} =3,5	n _{cv1} = 8, 16, 32			
Convolutional Layer 02	w _{c2} =3,5	n _{cv2} = 32, 64			
	Number of Neurons				
Fully-connected Layer	n _{fc1} =128, 256, 384, 512, 640, 768, 896, 1024				

Hyper Parameter	Value		
Learning Rate:	10 ⁻⁵		
Dropout:	0.75		
Batch size:	128		
Optimizer:	Adam		
Regularizers:	None		
Iterations	400k		

ESGA

Grid search strategy

192 possible models!!!

200k-3M free parameters

Results: time performance

192 Models: 40 days **factor 13.7** 70 hours

Results: time performance

Results: Overall Performance

Training dataset

Validation dataset

Loss function

1.00

0.950

0.900

0.850

0.800

0.750

0.700

50.00k

100.0k

150.0k

200.0k

250.0k

Results: Overall Performance

Training dataset Validation dataset LossFunction/LossFunction LossFunction/LossFunction 2.20 4.00 2.00 3.50 1.80 3.00 1.60 2.50 2.00 1.50 1.00 1.00 0.500 0.00 50.0k 50.00k 100.0k 400.0k 50.00k 100.0k 150.0k 200.0k 150 Ok 200 0k 250 0k 300 0k 350.0k Acc_20 Acc_20 0.850 1.00 0.950 0.800 0.900 0.750 0.850 0.700 0.800 0.650 0.750 0.600 0.700 400.0k 300.0k 50.00k 100.0k 150.0k 200.0k 250.0k 300.0k 350.0k 50.00k 100.0k 150.0k 200.0k 250.0k 350.0k 400.0k

Loss function

Accuracy_{20%}

Results: Overfitting solutions

✓ Increase size of training dataset.

✓ Change of activation functions.

✓ User of Regularization techniques.

✓ Early Stopping.

Results: Early Stopping

Top 10 models

Results: Activation Function

	wc1	nc1	wc2	nc2	nfc1	Free Parameters
Model-040	5	8	5	32	128	207730
Model-137	3	32	5	32	256	428130
Model-074	3	16	5	32	384	616258
Model-171	5	32	5	32	512	830818
Model-108	5	16	5	32	640	1018690
Model-114	5	16	3	64	384	1215074
Model-166	5	32	3	32	896	1417698
Model-175	5	32	5	32	1024	1635170
Model-188	5	32	5	64	640	2061058
Model-189	5	32	5	64	768	2462850
Model-062	5	8	5	64	896	2825618
Model-119	5	16	3	64	1024	3224034

Results: Regularization

	wc1	nc1	wc2	nc2	nfc1	Free Parameters
Model-040	5	8	5	32	128	207730
Model-137	3	32	5	32	256	428130
Model-074	3	16	5	32	384	616258
Model-171	5	32	5	32	512	830818
Model-108	5	16	5	32	640	1018690
Model-114	5	16	3	64	384	1215074
Model-166	5	32	3	32	896	1417698
Model-175	5	32	5	32	1024	1635170
Model-188	5	32	5	64	640	2061058
Model-189	5	32	5	64	768	2462850
Model-062	5	8	5	64	896	2825618
Model-119	5	16	3	64	1024	3224034

$$L1 = \lambda \sum_{i=1}^{k} |w_i|$$

$$L2 = \lambda \sum_{i=1}^{k} w_i^2$$

 $\lambda(L2) = 0.01$

 $\lambda(L1) = 0.001$

Summary and Conclusions

An hyper-parametric search (# filters, filter size and #neurons) was conducted to obtain best model for monitoring LMD process based on MWIR images.

Thanks to Finis Terrae II HPC CESGA infrastructure the time-to –solution was reduced from 40 days to 70 hours.

Time factor decrease of 14 but could increase to more that 100!!.

Additional approximations like changing activation functions or using regularizers can improve model performance.

THANKS FOR YOUR ATTENTION !!!

