Análisis automático de estructuras tubulares

Aplicaciones en enfermedades de aorta

Tahoces PG, Álvarez L, Trujillo A, Cuenca C, González E, Esclarín J, Gómez L, Mazorra L, Alemán-Flores M, Carreira J

Introduction

MDCT \rightarrow Provides isotropic 3D images, opening the door to the image as a quantitative tool.

Introduction

Introduction

The Aorta Case

The Aorta Case: Motivation

Segmentation of the aorta is useful for:

- Diagnosis and follow-up, based on several measurements like areas or diameters
- Preoperative planning
- Characterization for classification

Segmentation should be automatic in order to

- Reducing time consuming and efforts made
- Achieve reproducibility

The Aorta Case

The Aorta Case

$$
E_1(C, I, \sigma) = \frac{1}{|C|} \oint_C \nabla G_{\sigma} * I(C(s)) \cdot \overline{n}(s) ds
$$

First contour selection

First contour selection

$$
Q^{z} = \frac{V^{z}}{median\left\{V^{z}\right\}} - \frac{E^{z}}{median\left\{E^{z}\right\}} - \frac{\sigma^{z}}{median\left\{\sigma^{z}\right\}} - \frac{D^{z}}{median\left\{D^{z}\right\}}
$$

USC

$$
\left| E(\alpha,\beta,c) = w_1 E_1(C_{c,\sigma}^{\alpha,\beta}) + w_2 \sqrt{Area(C_{c,\sigma}^{\alpha,\beta})} + w_3 Eccentricity(C_{c,\sigma}^{\alpha,\beta}) \right|
$$

$$
E_1(C, I, \sigma) = \frac{1}{|C|} \oint_C \nabla G_{\sigma} * I(C(s)) \cdot \overline{n}(s) ds
$$

$$
C_{c,\sigma}^{\alpha,\beta} = \min E_1(C, I_c^{\alpha,\beta}, \sigma)
$$

$$
C_{c,\sigma}^{\alpha,\beta} = \min E_1(C, I_c^{\alpha,\beta}, \sigma)
$$

$$
C_{c,\sigma}^{\alpha,\beta} = \min E_1(C, I_c^{\alpha,\beta}, \sigma)
$$

$$
I_c^{\alpha,\beta}(x, y) = I \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix} + \begin{pmatrix} \vdots & \cos \alpha & 0 & \sin \alpha \\ -\sin \alpha \sin \beta & \cos \beta & \cos \alpha \sin \beta \\ -\cos \beta \sin \alpha & -\sin \beta & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}
$$

 $u = (\sin \alpha, \cos \alpha \sin \beta, \cos \alpha \cos \beta)$

$$
\left| E(\alpha, \beta, c) = w_1 E_1(C_{c,\sigma}^{\alpha,\beta}) + w_2 \sqrt{Area(C_{c,\sigma}^{\alpha,\beta})} + w_3 Eccentricity(C_{c,\sigma}^{\alpha,\beta}) \right|
$$

Descendent Gradient $f(x)$ $f(X_n)$ $x_{n+1} = x_n - \lambda \cdot f'(x_n)$ $f(X_n)$ $f(X_{n+1})$ Newton-Raphson + Damping Parameter $f(x_{n+2})$ $\sqrt{X_{n+1}}$ $\overline{X_n}$ X_{n+2} $f(x_n)$ (x_n) *n* $x_{n+1} = x_n - \frac{y_n - y_{n+1}}{n}$ $x_{n+1} = x_{n} - \frac{1}{c_1 c_2}$ $1 - \lambda_n$ α $f'(x_n) + \lambda$ $f'(x_n) + \lambda$
Medical Imaging Pablo García Tahoces $(x_n)+\lambda$

n

 \bf{X}

We have applied the former method to 2 DB's:

- \cdot CDB \rightarrow Normal and adnormal cases with enhanced contrast
	- 116 Cases \rightarrow 41,182 images
- LDIC \rightarrow Normal cases with/without enhanced contrast.
	- 290 Cases \rightarrow 54,125 images

mp

 mp

 mp

 mp

 mp

 mp

 mp

 mp

 mp

mp

 mp

 mp

Conclusions.

We have developed a fast tracking algorithm especially designed for tubular structures.

The data bases used to verify the performance of the algorithm come from different CTs and various acquisition protocols were employed. The algorithm works well for more than 95% of cases.

We are currently analysing how well performs the algorithm compared with human manual tracing. Preliminary results are encouraging.

