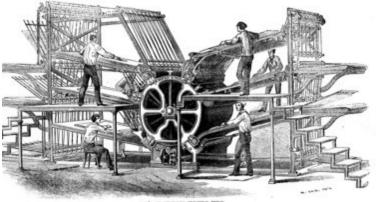


Hewlett Packard Enterprise


# Deep Learning at HPE

## Are we on the brink of a ....

**Change 1:** Moving from gather and hunting to settling down to farms and ports



**Change 2:** Developing the printing press and industrial revolution





#### Latest Change:

The greatest change of our lives. Artificial Intelligence





## Where would the road take us?

Advances in artificial intelligence will transform modern life by reshaping transportation, health, science, finance, and the military.

"High-level machine intelligence" (HLMI) is achieved when unaided machines can ac- complish every task better and more cheaply than human workers.



# The evolution of artificial intelligence Massive unstructured big data

### **Deep Learning**

- Unsupervised training
- Generic code
- Pattern recognition

#### Systems can

- Observe
- Test
- Refine



### Successes

- AlphaGO First Computer GO program to beat a human
- **Deep Face** Facial verification
- Libratus Al Poker App
- Digital virtual assistants Siri
- Google Self-driving cars

Predictive models defined by machines based neural networks

#### Small data sets

**Hewlett Packard** 

Enterprise

# Early artificial intelligence

- **ENIAC** Heralded the Giant Brain"; used for post WW II

Statistical and mathematical models applied to solve problems

1940 -

1980

#### Massive structured data sets

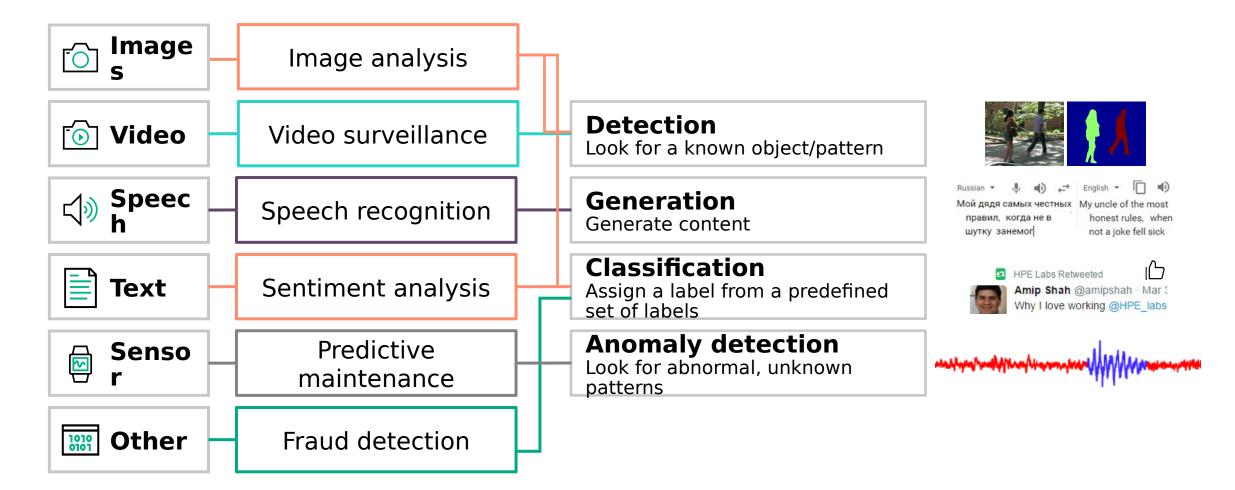
### **Machine learning**

- Deep Blue Beating World Chess Champion Kasparov
- DARPA Challenge
   Autonomous vehicle drove
   132 miles

Advanced Analytics and Heuristic

1990 -

2000s


### Today

## **Why deep learning?** Applications

| Vision                                                                                                                                                             | What can I help you with?<br>What can I help you with?<br>Speech                                                                                                                                                                              | QUEENS<br>KINGS<br>QUEEN<br>KING<br>Text                                                                                    | Other                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Search &amp; information extraction</li> <li>Security/Video surveillance</li> <li>Self-driving cars</li> <li>Medical imaging</li> <li>Robotics</li> </ul> | <ul> <li>Interactive voice<br/>response (IVR)<br/>systems</li> <li>Voice interfaces<br/>(Mobile, Cars,<br/>Gaming, Home)</li> <li>Security (speaker<br/>identification)</li> <li>Health care</li> <li>People with<br/>disabilities</li> </ul> | <ul> <li>Search and ranking</li> <li>Sentiment analysis</li> <li>Machine translation</li> <li>Question answering</li> </ul> | <ul> <li>Recommendation<br/>engines</li> <li>Advertising</li> <li>Fraud detection</li> <li>AI challenges</li> <li>Drug discovery</li> <li>Sensor data<br/>analysis</li> <li>Diagnostic support</li> </ul> |

Hewlett Packard Enterprise

# **Applications break down**





## How an individual customer's AI evolves



**Explore** How can AI help me?

### **Do things better**

- Product development
- Customer experience
- Productivity
- Employee experience

### Do new things

- New disruptions

Hewlett Packard Enterprise **Experiment** How can I get started?

**Boundary** constraints (regulations, etc.)

#### Data

Data model? Location?

#### How to **create** a model?

- Homegrown solution or open source?
- Simple ML or scalable DL?

### Design

How to design and deploy the PoC?

- On-prem, cloud?
- How to think about inference

### Performance

What is the best config to run? How to tune the model to improve accuracy?

### Scale up and Optimize

How can I scale and optimize?

## **Provisioning** for inference

### Infrastructure scale up

- Training
- Inference
- On-prem / cloud / hybrid

### Data management

- Between edge and core
- Security
- Updates
- Regulations
- Tracing

## What about AI consumers ?

## Do it yourself

Current wave of Al / Machine Learning is core to their business. All in-house

Google, Baidu, Facebook, Microsoft, Apple, etc.



## How do I do it ?

Could benefit from better data science, machine learning, but it is not historically their corecompetency

Banks, advertisers, healthcare, manufacturing, food, automotive, etc.

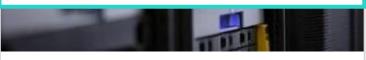
Not ready for an ASIC. Don't know what they need exactly. Many still developing on CPUs. Can't use solutions that can't be verified or understood

## I know better

Super-Experts – current wave is woefully inadequate

Government - DoD, DoE, NSA, NASA, etc.

Begging for higher performance ASICs.


Know exactly what they want to do. Strong technology pull.

# Key IT challenges are constraining deep learning

bidoption wledge, resources and capabilities

How to get started?





*"I need simple, infrastructure and software capabilities to rapidly and efficiently support deep learning app development."* 

Immature, sub-optimal foundation

# How to go to production?



*"I could use more expert advice and tailored solutions for migrating and integrating apps in a production environment."* 

Inability to scale and integrate How to scale and optimize?

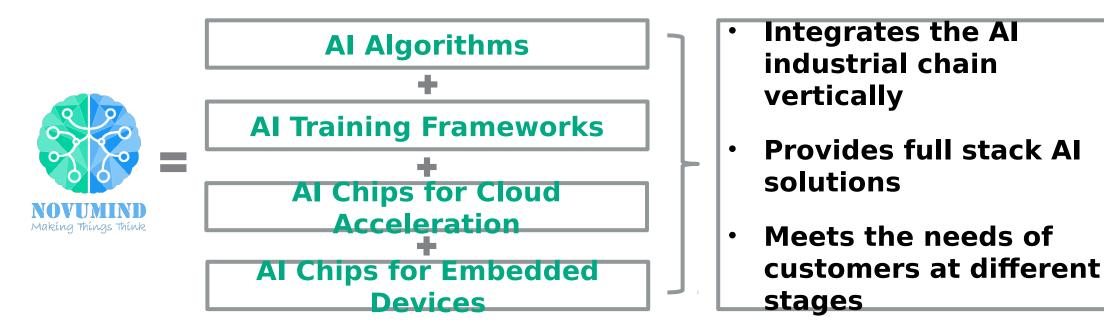
HPE - Novumind Improving Deep Learning Scalability



*"I need help integrating the latest technologies into my deep learning environment to accelerate actionable insights."* 

Lack of technology integration capabilities




# **HPE and Novumind**



## NovuMind - Providing full stack AI solutions

NovuMind is a multinational AI technology company, headquartered in the heart of Silicon Valley, with branch offices in Beijing, Hong Kong, Guangzhou and Taipei.





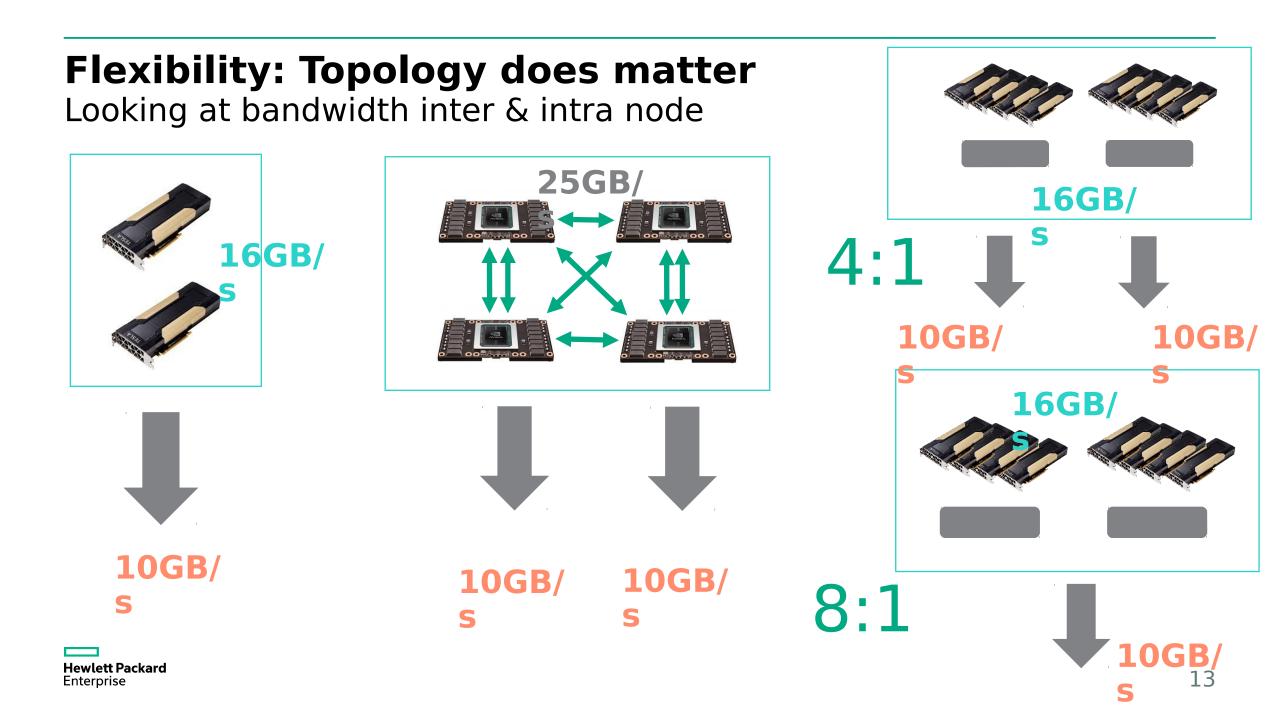
## Which problems are we trying to solve ?

Need to adapt system to growing needs & data

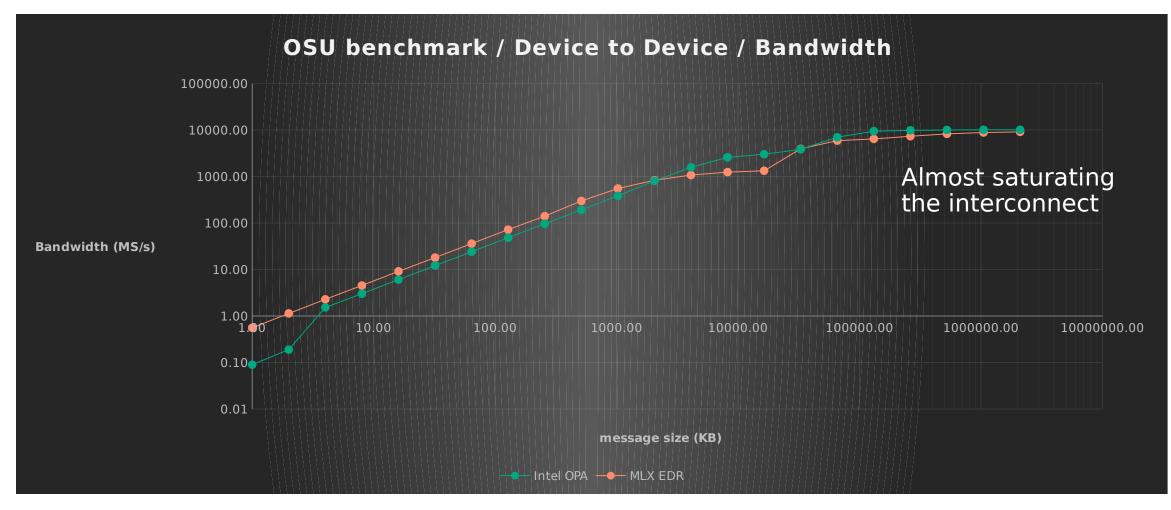
# • FLEXIBLE

Processing data, selecting framework & network and launching a job on any number of GPU must be easy

•EASY


Deep learning must run at optimal speed when system evolves / Hardware resources must be fully utilized

•EFFICIENT


Adding server must not degrade performances

•SCALABLE





## **GPU RDMA : efficient communication to scale out**

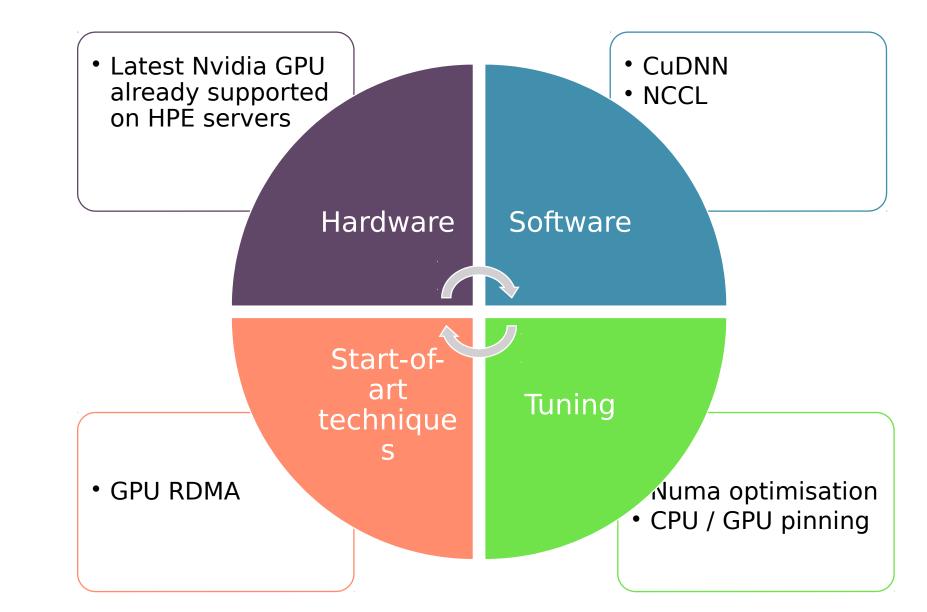




## **Easy: Job management Web User Interface**

| ]   localhost:9000/job/listJobs     |               |                 | C Q Search      | <b>\$</b> | Ê        |      |      | Ę   |
|-------------------------------------|---------------|-----------------|-----------------|-----------|----------|------|------|-----|
| NOVUMIND list all jobs Ad           | d a new job   | Contact         |                 |           |          |      |      |     |
| irrent time: Thu Jun 22 2017 11:04: | 56 GMT-0700 ( | PDT)            |                 |           |          |      |      |     |
| #1 Running Jobs                     |               |                 |                 |           |          |      |      |     |
| JobID                               |               |                 | Iterations      | JobStatus |          | Kill |      |     |
| 5c1ba57a-0118-45f2-9db1-1db1f       | 2ef000e       |                 | 150             | RUNNING   |          | Dele | te   |     |
|                                     |               |                 |                 |           |          |      |      |     |
| #2 Queued Jobs                      |               |                 |                 |           |          |      |      |     |
| JobID                               | JobS          | itatus          |                 |           | Kill     |      |      |     |
|                                     |               |                 |                 |           |          |      |      |     |
| #3 Finished Jobs                    |               |                 |                 |           |          |      |      |     |
| JobID                               | JobS          | itatus          |                 |           | Kill     |      |      |     |
|                                     |               |                 |                 |           |          |      |      |     |
| #4 All Jobs                         |               |                 |                 |           |          |      |      |     |
| JobID                               | JobStatus     | addTime         | startTime       | finishT   | ime      |      | Kill |     |
|                                     | RUNNING       | Thu Jun 22 2017 | Thu Jun 22 2017 | Wed De    | ec 31 19 | 69   | Dele | ata |

Convright @2016-2017 novumind com



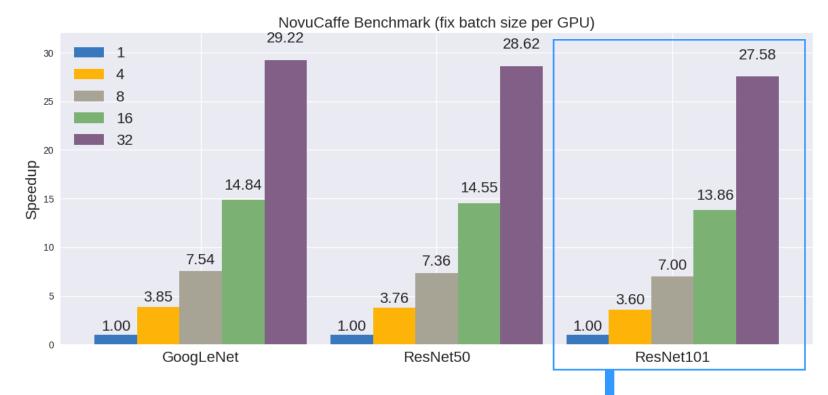

## **Easy: Resource Monitoring**

| 🌀 - 📲 Dock     | ker Host Overview (4) 🗸                                                                    | ☆ 🖿 🖺                            | ٠              |                                                                                 |                                       |                |                                                                                 |                                                       | < Zoom Out 🕨 🧿 Last | 15 minutes Refr                                                                       | resh every 3s 🛛 🕄                                                   |
|----------------|--------------------------------------------------------------------------------------------|----------------------------------|----------------|---------------------------------------------------------------------------------|---------------------------------------|----------------|---------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Status 😳       | Hosts                                                                                      | CPU Cores 🔅                      | CPU Idle       | Total Memory / Host                                                             | ୍                                     | Memory         | GPUs                                                                            | GPU Usage<br>-                                        | Total Memory / Gl   | <sup>ى</sup> v                                                                        | GPU Memory                                                          |
| !              | 8                                                                                          | 192                              | 76.90%         | 251.64 GiB                                                                      |                                       | 6.03%          | 32                                                                              | 34:91%~                                               | 11.92 Gil           | <b>3</b>                                                                              | 13-87%                                                              |
| c              | PU Usage [172.27.10.131]                                                                   |                                  |                | PU Usage [172.27.10.132]                                                        | ୍                                     |                | CPU Usage [172.27.10                                                            | .133]                                                 | CPU Usag            | e [172.27.10.134]                                                                     |                                                                     |
| 75%            | 🗕 guest<br>🗕 iowait                                                                        | avg current<br>0% 0%<br>0.08% 0% | 75%            | avg<br>guest 0%<br>iowait 0.02%                                                 | <b>current</b><br>0%<br>0.00%         | 75%            |                                                                                 | avg current<br>guest 0% 0%<br>iowait 0.03% 0%         | 75%                 | _ guest<br>_ iowait                                                                   |                                                                     |
| 50%            | 🗕 irq<br>🗕 nice                                                                            | 0% 0%<br>0% 0%                   |                | — irq 0%<br>— nice 0%                                                           | 0%<br>0%                              | 50%            |                                                                                 | irq 0% 0%<br>nice 0% 0%                               | 50%                 | 🗕 irq<br>🗕 nice                                                                       | 0% 0%<br>0% 0%                                                      |
|                | steal                                                                                      | 0.00% 0%<br>0% 0%<br>0.48% 0.08% |                | - softirq 0.01%<br>- steal 0%<br>- system 20.28%                                | 0.00%<br>0%<br>4.69%                  |                |                                                                                 | softirq 0.00% 0%<br>steal 0% 0%<br>system 1.74% 0.88% |                     | steal                                                                                 | 0% 0%<br>π 4.89% 2.32%                                              |
| 0% 17:20 17:25 | user                                                                                       | 0.32% 0.02%                      | 0% 17:20 17:25 | user 43.65%                                                                     | 10.07%<br>.:i                         | 0% 17:20 17:25 | 5 17:30                                                                         |                                                       | 0% 17:20 17:25 17:3 | ) user                                                                                | 4.14% 1.94%                                                         |
| G              | PU Usage [172.27.10.131]                                                                   | े                                | 100%           | 5PU Usage [172.27.10.132]                                                       | ې                                     | 100%           | GPU Usage [172.27.10                                                            |                                                       | GPU Usag            | e [172.27.10.134]                                                                     |                                                                     |
|                | — Gpu-0<br>— Gpu-1<br>— Gpu-2                                                              |                                  | 75%            | avg<br>– Gpu-0 85.36%<br>– Gpu-1 84.81%<br>– Gpu-2 85.57%                       | current<br>86.00%<br>89.00%<br>95.00% | 75%            | - G<br>- G<br>- G                                                               | pu-1 0% 0%                                            | 75%                 | Gpu-0<br>Gpu-1<br>Gpu-2                                                               | avg curren<br>57.09% 99.00°<br>32.52% 55.00°<br>32.56% 58.00°       |
| 25%            | — Gpu-3<br>— Gpu-4<br>— Gpu-5                                                              | 0% 0%<br>0% 0%                   | 50%            | Gpu-3 87.30%<br>Gpu-4 88.26%<br>Gpu-5 88.70%                                    | 95.00%<br>96.00%<br>96.00%            | 25%            | _ G<br>_ G<br>_ G                                                               | pu-4 0% 0%<br>pu-5 0% 0%                              | 25%                 | — Gpu-3<br>— Gpu-4<br>— Gpu-5                                                         | 32.41% 57.00 <sup>4</sup><br>0% 0 <sup>4</sup><br>0% 0 <sup>4</sup> |
| 0%             | Gpu-6<br>Gpu-7<br>5 17:30                                                                  |                                  | 0% 17:20 17:25 | — Gpu-6 89.38%<br>— Gpu-7 89.56%<br>17:30                                       | 95.00%<br>97.00%                      | 0%             | — G<br>— G                                                                      |                                                       | 0%                  | — Gpu-6<br>— Gpu-7                                                                    | 0% 04<br>0% 04                                                      |
|                | Network [172.27.10.131]                                                                    |                                  |                | Network [172.27.10.132]                                                         | ୍                                     |                | Network [172.27.10.1                                                            | ।33]                                                  | Network             | [172.27.10.134]                                                                       |                                                                     |
| 5.0 Mil        | <ul> <li>In: docker0</li> <li>In: docker_gwbridge</li> </ul>                               | avg current<br>2 K<br>0          | 5.0 Mil        | In: docker0 3 I                                                                 |                                       | 175 К          | <ul> <li>In: docker0</li> <li>In: docker_gwl</li> </ul>                         | avg current<br>749<br>bridge 0                        |                     | <ul> <li>In: docker0</li> <li>In: docker_gwbridg</li> </ul>                           | avg curren<br>757<br>re 0                                           |
| 4.0 Mil        | <ul> <li>In: enp129s0f0</li> <li>In: enp129s0f1</li> </ul>                                 | 169 К<br>15                      | 4.0 Mil        | - In: enp129s0f0 152  <br>- In: enp129s0f1 0                                    | (                                     | 125 К          | <ul> <li>In: enp129s0ft</li> <li>In: enp129s0ft</li> </ul>                      | 0 4.2 K<br>1 0                                        | 150 К               | <ul> <li>In: enp129s0f0</li> <li>In: enp129s0f1</li> </ul>                            | 3.8 K<br>0                                                          |
| 3.0 Mil        | <ul> <li>In: ib0</li> <li>In: ib1</li> <li>In: vethcb68d24</li> </ul>                      | 0<br>0<br>774                    | 3.0 Mil        | In: ib0 1 i     In: ib1 (     In: veth0d7dcbc 15 i                              |                                       | 100 К          | <ul> <li>In: ib0</li> <li>In: ib1</li> <li>In: vetha77f91</li> </ul>            | 347<br>0<br>d 776                                     | 100 K               | <ul> <li>In: ib0</li> <li>In: ib1</li> <li>In: veth21ab55a</li> </ul>                 | 936<br>0<br>775                                                     |
| LO Mil —       | <ul> <li>In: vethf3b2204</li> <li>In: vethf9e5211</li> <li>Out: docker0</li> </ul>         | 142<br>11 K<br>160 K             | 2.0 Mil        | In: veth0d92b97 777     In: vethc1372f3 0     Out: docker0 145 f                | )                                     | 50 K           | <ul> <li>In: vethb35fcc</li> <li>Out: docker0</li> <li>Out: docker_g</li> </ul> | 168                                                   | FOR                 | <ul> <li>In: veth405b4e9</li> <li>Out: docker0</li> <li>Out: docker_gwbrid</li> </ul> | 777<br>169<br>dge 0                                                 |
| .0 Mil         | <ul> <li>Out: docker_gwbridge</li> <li>Out: enp129s0f0</li> <li>Out: opp120c0f1</li> </ul> | 0<br>9 К                         |                | <ul> <li>Out: docker_gwbridge</li> <li>Out: enp129s0f0</li> <li>10 f</li> </ul> | )<br>(                                | 25 K           | Out: enp129s0     Out: enp129s0     Out: enp129s0     Out: b0                   | ofo 10.1 K                                            |                     | Out: enp129s0f0<br>Out: enp129s0f1<br>Out: ib0                                        | 7.8 K<br>0                                                          |
| 17:20 17:3     | Out: enp129s0f1                                                                            | 0                                | 17:20 17:      |                                                                                 |                                       | 17:20 1        | 7:30 Out: 160                                                                   | 3.5 K                                                 | 17:20 17:30         | Out: Ib0                                                                              |                                                                     |

Hewlett Packard Enterprise

# Efficient

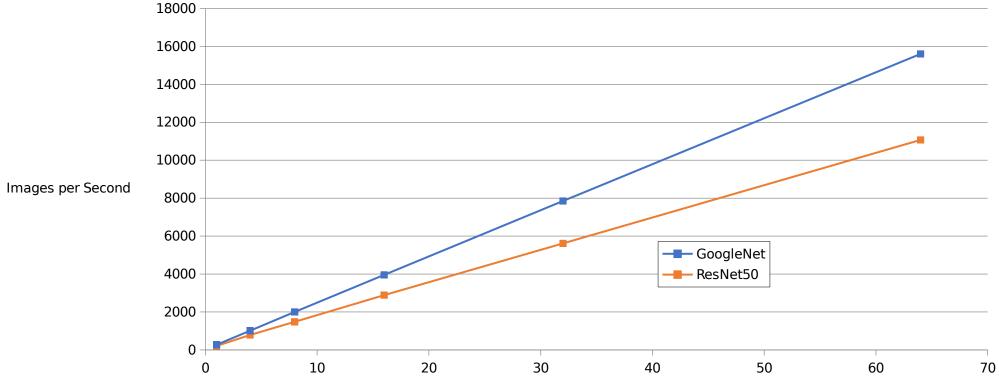





# Efficient: Leveraging Novumind experience for optimal runs

- Data Augmentation
  - scale and aspect
  - Color
  - Weight decay
- Per epoch data shuffling
- Base on Novumind's domain experience of predefined set of meta-parameter, tuning become cook book recipes.
- In certain scenario, LR scarified a little bit accuracy for much faster convergency
- Expert knowledge of past experience to tune neural networks. For example, in Image classification, No need to search for potential tuning. Novuforce will suggest optimal ones.
- Different verticals optimal parameters (security, heathcare, transportation, financial services)




## **Scalability: Benchmark Results**



| Iterations | Model     | Batch Size | GPUs | Elapsed (s) | Speedups | Final Loss |
|------------|-----------|------------|------|-------------|----------|------------|
| 2900       | resnet101 | 1 * 128    | 1    | 12027       | -        | 4.6682     |
| 2900       | resnet101 | 4 * 128    | 4    | 13378       | 3.5961   | 3.4406     |
| 2900       | resnet101 | 8 * 128    | 8    | 13748       | 6.9985   | 3.0311     |
| 2900       | resnet101 | 16 * 128   | 16   | 13889       | 13.855   | 2.3069     |
| 2900       | resnet101 | 32 * 128   | 32   | 13954       | 27.5809  | 1.7068     |

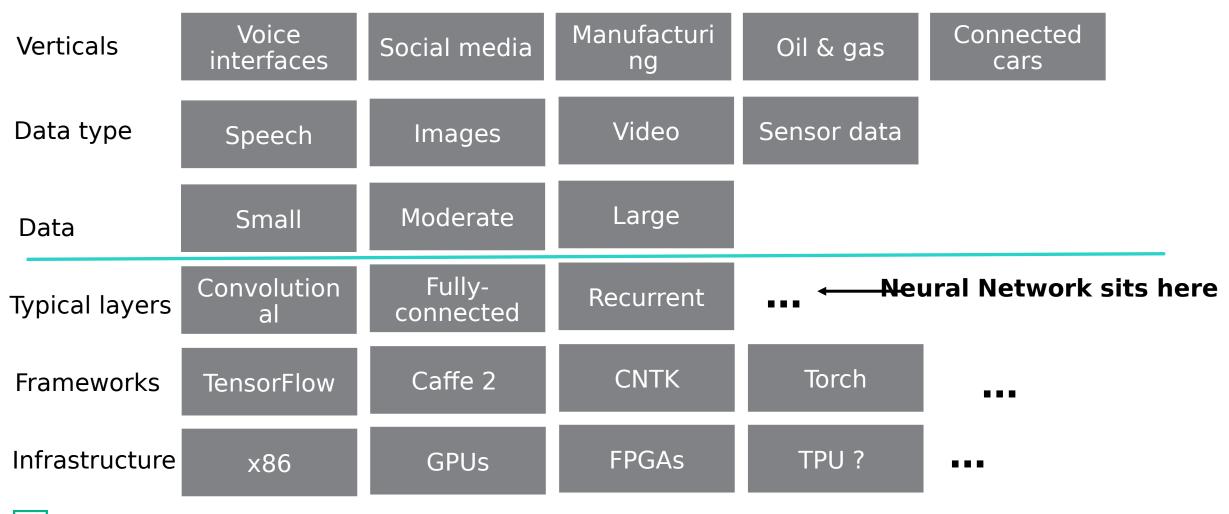


## **Scalability: Benchmark Results**



Linear Scaling of NovuForce Deep Learning

Number of GPUs




# **Deep Learning Cookbook**



# Where to start ?

### Recommend DL stack by vertical application



## **Neural Network : Popular Networks**

| Network   | Model size<br>(# params) | Model size<br>(MB) | GFLOPs<br>(forward pass) |
|-----------|--------------------------|--------------------|--------------------------|
| AlexNet   | 60,965,224               | 233 MB             | 0.7                      |
| GoogleNet | 6,998,552                | 27 MB              | 1.6                      |
| VGG-16    | 138,357,544              | 528 MB             | 15.5                     |
| VGG-19    | 143,667,240              | 548 MB             | 19.6                     |
| ResNet50  | 25,610,269               | 98 MB              | 3.9                      |
| ResNet101 | 44,654,608               | 170 MB             | 7.6                      |
| ResNet152 | 60,344,387               | 230 MB             | 11.3                     |

## Hardware : Today's scale and needs

Model size, data size, compute requirements

| Applicatio | n Model              | Training data                                                      | FLOPs per epoch                                                    |
|------------|----------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Vision     | 1.7 * 10⁰<br>~6.8 GB | 14*10 <sup>6</sup> images<br>~2.5 TB (256x256)<br>~10 TB (512x512) | 6*1.7*10 <sup>9</sup> *14*10 <sup>6</sup><br>~1.4*10 <sup>17</sup> |

1 epoch per hour: ~39 TFLOPS

#### Today's hardware:

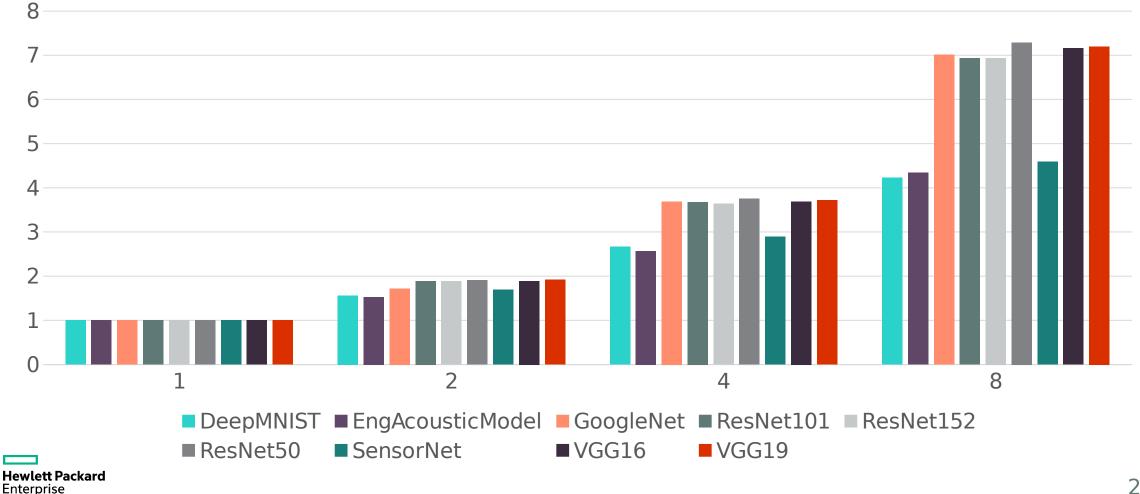
NVIDIA Tesla V100: 15 TFLOPS SP (30 TFLOPS FP16, 120 TFLOPS Tensor ops), 12 GB memory NVIDIA Tesla P100: 10.6 TFLOPS SP, 16 GB memory NVIDIA Tesla K40: 4.29 TFLOPS SP, 12 GB memory NVIDIA Tesla K80: 5.6 TFLOPS SP (8.74 TFLOPS SP with GPU boost), 24 GB memory INTEL Xeon Phi: 2.4 TFLOPS SP

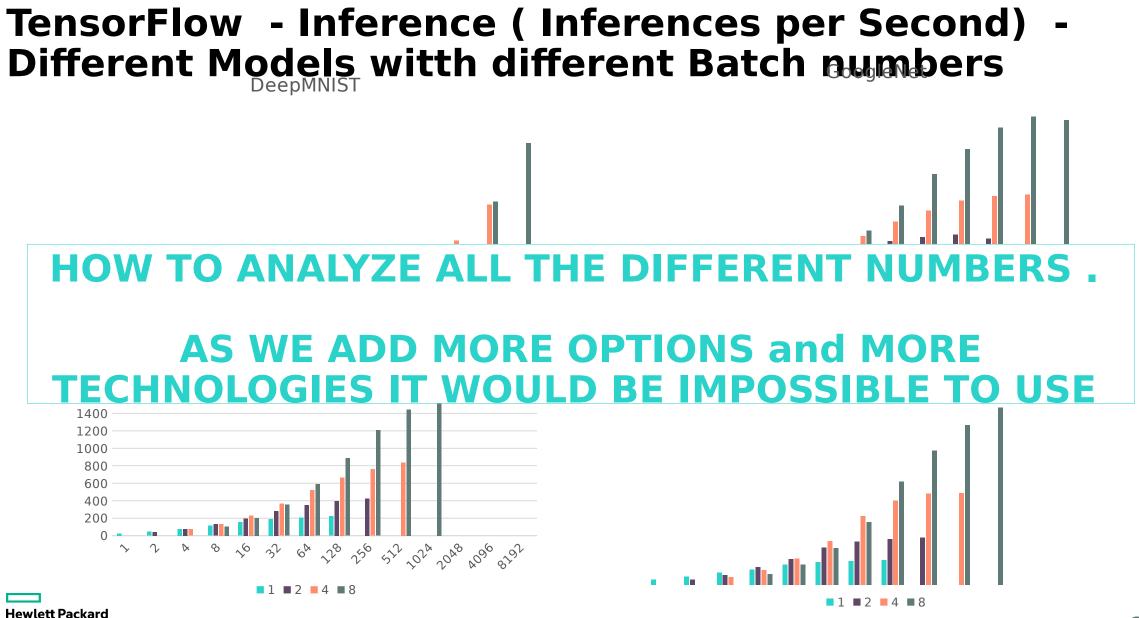
Superdome X: ~21 TFLOPS SP, 24 TB memory



## So what to recommend?







# **Building performance models**





## TensorFlow - Weak Scaling - Training - Different models perfromance in Tensor Flow . Scaling up to 8 GPUs Speedup for up to 8 GPUs







# Select ideal technology configurations

with HPE Deep Learning Cookbook

# "Book of recipes" for deep learning workloads



- **Comprehensive tool set** based on extensive benchmarking
- Includes various models with 8 DL frameworks and 8 HPE hardware systems
- Estimates workload performance and recommends an optimal HW/SW stack for that

workload

**Hewlett Packard** 

Enterprise

### Expert advice to get you started



- Informed decision making optimal hardware and software configurations
- Eliminates the "guesswork"
  - validated methodology and data
- Improves efficiency detects bottlenecks in deep learning workloads
- Determine scalability

### Availability of complete toolset



- Deep Learning
   Benchmarking Suite: available on GitHub Dec 2018
- Deep Learning Performance Analysis Tool: planned to be released in the beginning of 2018.
- Reference configurations: available soon on HPE.com website

#### Deep Learning Cookbook

| Automatic Meeting Notes                                                  | Video Surveillance                                             | Hospital Smart Care Unit                            | Custom             |
|--------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------|
| ✓     Videos     ✓       Text     □       Speech     □       Sensor Data | Classification<br>Detection<br>Generation<br>Anomaly Detection | ) Training<br>Large<br>Medium<br>Small<br>Inference |                    |
| Recommend<br>Data and Model                                              |                                                                |                                                     |                    |
| Data size<br>10000000                                                    | Epochs<br>50                                                   | Model<br>VGG19                                      | ▽                  |
| lardware                                                                 |                                                                |                                                     | 1.0                |
| Server<br>Apollo 6500 🗸                                                  | Processor unit<br>NVIDIA P100                                  | $\bigtriangledown$                                  |                    |
| Count<br>8                                                               | Cluster size<br>2                                              | Interconnect<br>InfiniBand FDR                      | $\bigtriangledown$ |
| Software                                                                 |                                                                |                                                     |                    |
| Framework<br>Caffe2                                                      | Batch size<br>1024                                             | Scaling<br>Strong                                   | $\bigtriangledown$ |
|                                                                          |                                                                |                                                     |                    |



Remove all





# Thank you

Natalia Vassilieva nvassilieva@hpe.com

Sergey Serebryakov sergey.serebryakov@hpe.com Sorin Cheran sorin.cheran@hpe.com

Bruno Monnet bruno.monnet@hpe.com

